
System Capability Effects on Algorithms for Network
Bandwidth Measurement

Guojun Jin Brian L. Tierney
Distributed Systems Department

Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720

g_jin@lbl.gov

Permissionto makedigital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout feeprovidedthatcopiesare
not made or distributed for profit or commercialadvantageand that
copiesbearthis notice and the full citation on the first page.To copy
otherwise,or republish, to post on serversor to redistributeto lists,
requires prior specific permission and/or a fee.
IMC?03, October 27-29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010...$5.00.

ABSTRACT
A largenumberof tools thatattemptto estimatenetworkcapacity
and available bandwidth use algorithms that are based on
measuringpacket inter-arrival time. However in recent years
network bandwidthhas becomefaster than systeminput/output
(I/O) bandwidth.This meansthat it is gettingharderandharderto
estimatecapacityandavailablebandwidthusingthesetechniques.
This paper examinesthe current bandwidth measurementand
estimation algorithms, and presentsan analysis of how these
algorithmsmight work in a high-speednetworkenvironment.This
paperalsodiscussesthesystemresource(hardwareandsoftware)
issuesthat affect eachof thesealgorithms,especiallyrunningon
generic platforms built from off-the-shelf components.

Categories & Subject Descriptors:
B.8.2 [Hardware]:PERFORMANCEAND RELIABILITY —
Performance Analysis and Design Aids; C.4 [Computer
SystemsOrganization]: Performanceof systems— Design
studies, Measurement techniques, Performance attributes,
Reliability, availability, and serviceability; D.4.8 [Software]:
Operating system — Performance Measurement;
C.2.3[ComputerSystemsOrganization]:Network Operations
— Network monitoring; F.2.0 [Theory of Computation]:
Analysis of algorithms and problem complexity;
G.4 [Mathematicsof Computing]: Mathematicalsoftware —
Algorithm design and analysis; C.2.5[Computer Systems
Organization]:Local and Wide-Area Networks — Busesand
High-speed.

General Terms:
Measurement, Algorithms, Performance and Design

Keywords:
Network,Bandwidth,Measure,Estimation,Algorithm, System
Capability, Design, Performance

1. INTRODUCTION
Active measurementis a convenient means to estimate
availablenetworkbandwidthfor ordinaryusersbecauseit does
not require router access. Although passive network
monitoring methods such as simple network management
protocol(SNMP) [1] canprovidedetailedstatisticson network
elements(routers and switches)such as physical bandwidth
(capacity [6]) and utilization, they unfortunately require
special accessprivileges which are not usually available to
ordinary users.

Algorithms for actively measuring network physical and
available bandwidthshave been researchedfor many years.
Many tools have beendeveloped,and only a few tools have
successfully achieved a close estimation of network
bandwidths, especially for networks faster than
100Mbits/second.The main reasonthesealgorithms fail to
accuratelyestimatehigh-speednetworkbandwidthis that they
do not take the capabilitiesof the measurementhost system
into account.

Ideally, the network bandwidth estimationalgorithm should
not be dependenton end host performance. If end host
capabilities are involved, the measurementwill be of the
system throughput rather than the network bandwidth.
Unfortunately, most current available bandwidth estimation
algorithmsrequire that the end hostshave throughputhigher
than the availablenetwork bandwidth.The goal of a network
measurement tool should be to measure the available
bandwidthof the networkpath,not the availablebandwidthof
the measurement host itself.

A number of tools and algorithms do successfullyestimate
networkbandwidthon lower speednetworks.Pathchar [10] is
designedto estimatephysicalbandwidthof hop-by-hoplinks.
Clink [4] and pchar [23] are different implementationsof
pathchar.Pathload is for estimatingavailablebandwidth[10].
Nettimer [5] usesa passivealgorithm to measurethe narrow
link capacity of a path, but this algorithm requires that no
queuing occur on any network elementafter this bottleneck
link, and thusworks only on very idealisticpaths.Netest [16]
measures end-to-end achievable throughput or available
bandwidth,whichever is feasible,on networks ranging from
asymmetric digital subscriber lines (ADSL) to high-speed
networks. Netest also analyzes the cross traffic, and thus
estimatesphysical bandwidth of the bottleneck link. This
paperwill analyzethe algorithmsusedby thesetools, as well
as new tools pathchirp [15] and igi [18], and addresshow
system capabilities affect their measurementson different
typesof networks.Othertools,suchasbprobe/cprobe [2], ttcp
[19], iperf [21], netperf [22], Sprob [9], andTreno [24], do not

measure available bandwidth but rather achievable throughput
[16]. Therefore we do not discuss them here.

In addition to analyzing existing algorithms, this paper gives a
detailed discussion on end host issues and the techniques
required to estimate high-speed networks of the future using
PC-based hardware. Also, this paper presents an in-depth
analysis on the limitations of how the Berkeley packet filter
(BPF) can be used via packet capture library (libpcap) for
network measurement, especially on high-speed networks.

2. MEASUREMENT METHOD AND
HISTORY

Sending probe packets to networks is a common way to
actively measure network bandwidth. Figure 1 characterizes
various algorithms used to measure networks, and shows the
relationship between tools and algorithms.

For each algorithm, there are two different methods used to
probe the network: single packet and packet train (multiple
packets). There are several techniques for using these two
methods, such as varying the packet size, dispersion, spacing,
and so on. [5][6] present arguments on dispersion technology
and describes how useful they are. [12] presents ideas on
multiple packet techniques. Figure 1 illustrates that packet
dispersion is used in a variety of network measurement tools.

Ping is the earliest (1980) and simplest network measurement
tool based on a single packet probe. It measures the round trip
time (RTT) based on the time to forward a single packet plus
the time to get an Internet Control Message Protocol (ICMP)
reply packet. Ping results can be used to estimate network
congestion by analyzing the RTT variation. Developed in
1988, traceroute used a similar mechanism to measure RTT on
each hop. In the same year, ttcp [19] provided a method using
a User Datagram Protocol (UDP) stream to obtain a majority
of the path bandwidth in order to estimate the path bandwidth
in a highly intrusive manner. In 1991, netest-1 (netest version
1) used a burst methodology, assuming that a UDP burst can

gain most of the bandwidth in 10 RTTs (round trip time) if
most of the competing network traffic is Transmission Control
Protocol (TCP). The maximum burst size was set between 0.5-
1 second. Netest-1 repeats the same test in every 5 seconds
with a short UDP/TCP burst instead of a continuous UDP
stream.

The methods used by both ttcp (UDP mode) and netest-1 are
based on packet trains. Pathchar was released in 1997, used a
variable packet size algorithm to measure link physical
bandwidth. Since 2001, many bandwidth estimation tools have
been released, most of them designed to measure available
bandwidth, and most based on packet dispersion. Nettimer [5]
is for estimating the narrow link (a router or switch that has the
lowest capacity along a path) physical bandwidth. Pathload
[10] estimates the available bandwidth. NCS and netest rev. 2
are designed to measure bandwidth as well as the achievable
throughput and other important network characteristics. Two
new tools, pathchirp [15] and igi [18], are also for available
bandwidth measurement.

All of these tools are active measurement tools because they
send packets into the network in order to make a measurement.
Some tools, such as ping, are not intrusive. Packet-train-based
tools, such as ttcp, can be very intrusive, sending a large
number of packets into the network and possibly pushing other
traffic aside. Packet trains that are too long can also cause
router queues to overflow.

3. SYSTEM RESOURCES
Tools for measuring network bandwidth rely not only on
accurate mathematical algorithms but also on well designed
implementations that consider all possible effects of host
system performance. This section describes such issues.

System resources which affect network bandwidth estimation
are the resolution of the system timer, the time to perform a
system call, the interrupt delay (coalescing), and the system
I/O bandwidth (including memory bandwidth). The timing-
related system resources — timer resolution, system call, and

Figure 1. Using packet to probe network; also relations between algorithms and tools

Multiple PacketSingle Packet

FSE

Hop Diff Dispersion

FAC2

Size Diff BunchSize Diff

end-to-end

VPS
Variable Packet Size

e.g. Pathchar

VPT — Variable
packet train and virtual
packet train that are
similar to VPS, but use
different converging
algorithms.

PPD
Packet Pair Disper-

sion

e.g. Nettimer

OWD
One Way Delay

e.g. Pathload

hop-by-hop
e.g. NCS e.g. Netest

interrupt delay — all affect packet-dispersion-based
algorithms much more than they affect packet-train-based
algorithms. System I/O bandwidth affects all algorithms
equally.

3.1 Interrupt issues
The I/O interrupt interval significantly impacts high-speed
NIC (network interface card) performance.For example, if
every packet arriving on an 1 Gb/s NIC generatesan I/O
interrupt, then the system will get interrupted every 12 µs.
Most host systemsare not able to keepup with this interrupt
rate.A commontechniqueto reduceCPU requirementsandto
increase throughput is called interrupt moderation. Many
high-speedNICs, including the SysKonnect card, provide
interrupt moderation(also known as interrupt coalescenceor
delayedinterrupt), which bundlesseveralpacketsinto a single
interrupt.The ideais that the NIC, on receiptof a packet,does
not automaticallygeneratean interrupt requestingthe CPU to
processthe dataandreleasingbuffers for the NIC to get more
packets.Instead,the interruptis delayedfor a given amountof
time (the interrupt moderation period) in hopes of other
packetsarriving during that time and being servicedby the
same interrupt.

Table1 shows how interrupt coalescing affects CPU
utilization, thus increasingthe network throughput.TCP/IP
packetsare 1500 bytesfor all measurements.The CPU usage
was measuredby averaging results from UNIX command
“ top” with 1-secondrefresh rate when running iperf with
durationsof 10 and30 seconds.The “vmstat1” commandwas
also usedto verify the top result. In Table1 we seethat the
receivinghostneeded92%of theCPUto handleI/O interrupts
with default interrupt delay settings for the NIC. After the
interrupt delay was increasedfrom 64 to 300 µs, the CPU
usage dropped to 72% due to the generation of fewer
interrupts.This meansthat the CPU hasmore time to process
packets,so throughputincreased85.9%. Figure2 showsthat
tuning the interrupt delay time is not trivial. Testswere done
settingthe delay from 200 to 550 µs on an Intel P3 Xeon 933
MHz system(64-bit/66MHz PCI). The interrupt delay below
470 µs hasno significant impact on CPU usage.Delay values
between470 µs and475 µs makethroughputunstable.This is
probablytheboundarywheretheCPU usageis sensitiveto the
I/O interrupts. 480 µs is the lowest value for getting good
throughput on this system for receiving a high-speedTCP
stream.

Ideally, the interrupt moderationperiod is short enough to
keep the NIC from running out of buffers and to avoid large
delaysin packetprocessing.The maximum interrupt interval
(I_time) can be computed as:

I_time = N * average_packet_size / line_speed

whereN is the numberof receiverbuffer descriptorsstatically
compiled in the network interface device driver. The main
drawbackof interruptcoalescingis that the kernelis no longer
ableto assignaccuratetimestampsto the arriving packets.The
problemis that packetsare processeda significant amountof
time after they arrive at the host. Fortunately,somenetwork
cards(for example,SysKonnect)havean onboardtimestamp
register which can provide information on the exact packet
arrival time, and pass this timestampto the system buffer
descriptor.We havemodified the FreeBSDSysKonnectdriver
to allow us to use the NIC timestampinsteadof the system
clock timestamp [14].

3.2 System call issues
Table2 lists thetime to performa systemcall on two operating
systemsrunning on various CPUs. The time to perform a
systemcall affects both the outgoing packet pacing and the
time to get timestampsfor incoming packets.In next section,
thesenumbersarebothusedto analyzehow packet-dispersion-
basedalgorithmsareaffectedby systemcall time. The syscall
time is measuredfor two areas— getting a timestampand

Table 1. CPU utilization affected by I/O interrupt

interrupt delay time
(coalescing)

% CPU
IDLE

% CPU
Interrupt

Throughput
Mb/s

64 µs interrupt delay for Intel
copperGigE(PCI/33GC-SL)
+ Intel P4 Xeon 3 GHz CPU

0 92 277

300µs interrupt delay for
above configuration

1 72 515
Table 2. Time of Syscall

timestamp is via
gettimeofday API
and kernel TSC

(microtime)

Linux 2.4.1x FreeBSD 4.8-RELEASE

timestamp
ns

read/write
ns

timestamp
ns

read/write
ns

Xeon

Intel

P4

2.4 GHz 900 1400 4409 1206

2.0 GHz 980 1100 4590
(3567)

130

AMD MP 1730.7
MHz

4195
(4033)

217

AMD XP 1400
MHz

282 506

Intel P3
746.17
MHz

943 2100 4700 289

531.83
MHz

970 2050 1800
4.3-R

380
4.3-R

Figure 2. Tuning interrupt delay time

doing I/O. Eachsystemcall is measuredin 1 loop (singlecall),
1000loops(a valuebetween1 andthe longestloop), and1800
loops(largeenoughwithout hitting the contextswitch time —
10 ms), and the result is a lower value with the higher
frequency.Gettimeofday is the UNIX syscall for getting the
timestamp.The I/O syscall time is the averageof read and
write system calls. The read/write call test is done by
reading/writing zero bytes to the stdin/stderr in non-block
mode (O_NONBLOCK).

It seemsthat the cost of getting system time is almost a
constant,and the cost is very high comparedwith the CPU
clock rate, especiallyon the FreeBSDsystems.What is the
reasonfor this?SincetheCTC (clock time counter— industry
standard8254counter/timer,alsoknown as timestamp counter
or TSC) chip is very simple and thereis no specific bus lock
required to accessthis chip, the issue is the generic clock
accessmethod.To make the operatingsystemcode work on
different motherboards,the CTC is accessedvia the I/O bus,
either ISA or PCI, but not directly from the main bus. The
highest frequency of these I/O busesfor accessingCTC is
33 MHz, and reading the counter register requires8–16I/O
buscycles,dependingon how the codeis implemented.In the
best case,reading the CTC register requiresabout 242.4ns
(8 I/O cycles on 33 MHz PCI bus); while the worst case
requires959ns (16 I/O cycleson 16.667MHz ISA bus). [11]
confirms this calculationwhich matchesthe resultsin Table2
for Linux, which usesthe sameCTC (TSC) readcodederived
from FreeBSD.However,FreeBSDhastwo timestampmodes
— safeand fast. The fast modeis the sameas the Linux CTC
readmode— one readper request.The safemode readsthe
counter3–4 times in order to confirm and calibratethe clock
accuracy.The resultslisted in Table2 for FreeBSDarefrom a
backwardcompatibleimplementationthat readstwo 8-bit time
registers(the newerCTC has16-bit time registers)to form a
16-bit counter.This explainswhy thecostof readingCTC is so
high on FreeBSDsystems.This fact indicatesthat the cost of
gettinga timestampis in readingCTC (TSC) ratherthanin the
systemcall API gettimeofday. Therefore,packetstimestamped
in user space via gettimeofday have similar accuracy as
timestampedinsidethe kernel,for examplevia BPF (Berkeley
packet filter). Table3 showssyscall cost on more operating
systems.

The systemcall time also affects our ability to increasethe
system timer resolution. The current UNIX system timer
resolutionavailableto a user (via gettimeofday) is 1 µs. The
systeminternal timer resolution is often at 1 nanosecondin
modernUNIX systems.However,the time to performa system

call limits the usertimer resolutionto 1.9 µs on mostsystems
with x86-basedCPUsrunning Linux, and limits it to 9 µs for
FreeBSDsystemsbecausetwo gettimeofday callsareneededto
get the relative time. Therefore, the design of bandwidth
measurement algorithms must take this issue into account.
Note thatanonboardNIC timer, asmentionedat theendof the
§ 3.1, may not improve the timer resolutionfor this situation
becausethe CTC still needsto be read to obtain the current
systemtime. The onboardNIC timer alsoneedsto be accessed
to obtaintherelativeclock to computethearrival time for each
packet.

4. TIMING EFFECT ON EXISTING
ALGORITHMS FOR BANDWIDTH
MEASUREMENT

This section describes the algorithms currently used to
measure network bandwidths, and analyzes the system
resources requirements for each algorithm.

4.1 Single packet oriented algorithms:
Pathchar usesvariable packet size (VPS) algorithm,including
size differential (SD) andhop differential (HD)[8] methods,to
estimatelink physicalbandwidth.The SD algorithmmeasures
the time difference, ∆T, for a constant ∆S — the size
differencefor packetsize increment,by sendingUDP packets
from the sourcehost to eachnetwork elementand measuring
the time to get an ICMP response(Figure3). Thusthe transfer
rate can be denoted as:

∆S = S2 - S1, S1 and S2 are sizes for two different packets
∆T = T2 - T1, T1 and T2 are the time to send packets S1 and S2 toa
router respectively.

This algorithm hasa limitation that the maximum ∆T, which
dependson the maximumpacket-sizedifference,is limited by
the MTU (maximumtransferunit) of the network interface.If
the network interface is Ethernet, the maximum size
difference∆S is 1472bytes.Whena link bandwidth(BW) is
OC-3 (155 Mbits/sec) or higher, the∆T will be smaller than

1472× 8 ÷ 155•106 = 75.974µs

A typical multi-hop round-trip time (RTT) is greater than
1 ms, and typical systemcontext switch time is 10 ms. For
short distances(RTT < 6 ms), the routerqueuinghasa higher
effect on theRTT, andtheaveragequeuingdelaywe have seen
by ping is around0.05~0.3ms for RTT lessthan6 ms. In long
distance cases, at least every other measurementwill be
interruptedby onecontext switch if thereis any otherprocess
running, and the context switch hasmore impact on the RTT
measurement.Undersuchcircumstances,this RTT fluctuation
causesa ±5% error rate (where the context switch may
introducean even higher error rate) in time measurement,so
the deviation of RTT (∆RTT), is greater than 50 µs. Under
these circumstances, the time difference becomes

∆T = Tl - Ts

= (Sl÷BW + RTTl) - (Ss÷BW + RTTs)
 = ∆Τ(zero traffic) ± ∆RTT (1)

where

Sl and Ss are the sizes of the largest and smallest packets

Table 3. Syscall time for more O.S.

O.S. Hardware gettimeofday read/write

Solaris 2.8333MHz Sparc 348 ns 8400 ns

Solaris 2.7400MHz Sparc 278-295 ns 5300 ns

AIX 4.3.3 RS 6000 > 3000 ns 8500 ns

IRIX 6.2 175 MHz IP28 7946 ns 28162 ns

BSD/OS 4526 MHz P2 10877 ns 11357 ns

Mac OS X
10.2

1 GHz G4 1937 ns 2043 ns

RTx
S∆
T∆

-------=

Tl and Ts are the time to transfer each of these two packets

RTT = Tsys + Tps + Tq + Tack

Tsys is the system call time

Tps is the time to send (copy) a packet from user space to the

edge of a network interface card (NIC) or the reverse.
Tq is the queuing time for both directions
Tack is the time for acknowledgment to travel back

Therefore, transmissiontime is not directly proportional to
packet size in the real network.

The time difference between the largest packet and the
smallestpacketthatcanbetransmittedfrom a sourcehostto an
intermediaterouter is inaccuratewhen∆RTT hasa magnitude
similar to ∆T(zero traffic), and thus dominates∆Τ. So, this
algorithm is only good for probingnetworkswith capacityup
to OC-3 (155Mb/s) when the MTU is 1500 bytes(seeresults
on p. 17-18[26]). In a networkwherejumboframes(9 KB) are
used,this algorithm may measurecapacityup to 1 Gb/s. The
main merit of this algorithm is that the sourcehost doesnot
need high-transfer-rate hardware to measurebandwidth on
high-speed networks.

Since cross traffic can causeT1 and T2 to vary greatly, a
single probe will not get an accurateestimateof available
bandwidth. In order to obtain a more accurateresult, this
algorithmsendsa numberof different sizepacketsto measure
the bit rate for eachpacket,and thenuseslinear regressionto
converge on a result.

Figure3 showsthe VPS timeline for transferringtwo packets.
It showsthat RTx on the first hop representsthe link capacity,
and RTx on the remaininghopsdoesnot becauseof storeand
forward delay. To acquirethe time differencebetweenrouter
N and router N+1, hop differential (HD) is needed.

In Figure3, the times have beenshifted so that start time of
bothpackets1 and2 arealignedat time 0 on thegraph.At hop
1 (sourcehost to router A), thesepacketsleave router A at
different timesdueto the storeandforward delay.This means
that ∆TB = T2B - T1B doesnot representthe time differenceof
transferringthesetwo packetsfrom A to B. Figure3 shows
that the storeand forward delaybetweenthesetwo packetsat

router A is ∆TA = T2A - T1A. So, the real time difference
between transferring these two packets from A to B is:

∆TAB = ∆TB - ∆TA = T2B - T1B - (T2A - T1A)

and the bandwidth of this link is:

BW = ∆S ÷ ∆TAB

This is the hop differential algorithm.This algorithm hastwo
network element (router and switch) related issues. First,
different routers may have different ICMP responsetimes.
This discrepancy createsdifficulties for algorithmsbasedon
the hop differentialcalculationandis the reasonwhy pathchar
sometimesgives negative results. Second, if any network
elementthat has no ICMP response(e.g.: a layer-2 switch),
called a hidden device, is immediately before the measured
router, the hop differential algorithm will result in a lower
bandwidth, which can be computed by a serialization formula:

BWA and BWB are physical bandwidthsof router A and B.
This is how the HD algorithm can be usedto detecthidden
devices.

4.2 Packet dispersion based algorithms:
Packetdispersionhappensbetweenany packetpair — both a
singlepacketpair andpacketpairswithin a packettrain. This
section describes three algorithms based on the packet
dispersion: single spacing, constant spacing, and variable
spacing.

Single spacing (packet pair) —

Packet pair dispersion (PPD)is usedin nettimer to analyzethe
bottlenecklink capacity.Nettimer usesa passivemeasurement
methodto look at incoming packetpairs from a given source
host.This algorithm is demonstratedby the dottedline box in
the lower left cornerof Figure4. The PPDalgorithmsaysthat
if a pair of packetstravelsback-to-backthrougha bottleneck

Figure 3. VPS transfer timing of two packets on a

H
op

Time

packet 2
packet 1

A

B

C

T1A

T2A

T1C

T1B

T2B

T2C

ICMP

∆TB

∆TAS1

S2

packets’ start times are nudged

BW
BW A BWB×

BW A BWB+
---------------------------------=

Figure 4. Packet pair and Fluid Spray Effect (FSE)

link, the lastbits of thetwo packetsarefurtherseparated.After
they leavethebottlenecklink, this separationwill remainuntil
they arrive at the destination.So, the PPD representsthe
narrow(bottleneck)link’s capacity.This is true if andonly if
no crosstraffic occursat the later routers.The Internetalmost
always has cross traffic, which causesthe fluid spray effect
[13] (FSE — Figure4 and § II.C) when many traffic streams
comein from different interfacesandareroutedout at another
interface with all the packetsbunchedtogether,so that the
PPD theory does not apply.

This algorithm requiresonly one resource— accuratesystem
timer resolution,since it is a passivemonitoring method.To
accuratelymeasurepacketpair dispersion,the incoming PPD
mustbegreaterthanthe time for executingat leastfour system
calls, two for getting the arrival time of eachpacketand two
for reading each packet.A mandatoryrestriction is that the
network device cannot have interrupt coalescing enabled,
otherwisethe packetarrive timestampswill be incorrect.For
example, all incoming packets may have the same timestamp.

Constant spacing (self-loading periodic streams)

Pathload usespackettrainswith evenlyspacedpacketswhich
detect one-way delays (OWD)[6] to measure available
bandwidth. Theoretically, this algorithm may accurately
measuresavailablebandwidth.The actualmeasurementresult
will vary, especiallywhen measuringa high-speednetwork,
due to the hardware capability and implementation. As
discussedin § 5, to use packettrains to measurebandwidth,
both sending and receiving hosts must have higher I/O
bandwidth than the available network bandwidth. To cause
OWD, theprobestreammusthavea highertransferrate(Rsnd)
than the availablebandwidth (Abw). The differencebetween
RsndandAbw dependson theAbw andNIC speed— thehigher
the speed,the larger the differenceof betweenthe Rsnd and
Abw. For example,if the Abw is 900Mb/s, the OWD requires
920Mb/s Rsnd; but for 9000Mb/s Abw, the OWD requires
9200Mb/s rather than 9020Mb/s Rsnd. Intuitively, this
difference is directly proportional to the resolution of the
systemtimer. The higher the resolutionof the systemtimer,
thesmallerthedifferencerequiredto determinetheOWD; thus
the result is more accurate.

The minimum time neededto distinguish the delay can be
either a fixed amountof time or somepercentageof the time
neededto finish thebursttransfer.If the receiveris currentPC
hardwarewith 1 µs time resolutionand a timestamptimer on
the NIC, a few microseconds(for getting the systemtime) or
the time for two systemcalls (readdataandget systemtime),
whichever is greater, can be the lower limit for the time
difference.The basicrequirementfor this algorithmis that the
source host needs to have a higher transfer rate than the
available bandwidth.

Pathloadusespair-wisecomparisontest (PCT) and pair-wise
differencetest (PDT) metricsandstatisticsto detectthe OWD
trend.This algorithmbuildsa region,calledthegray area, that
can be adjustedto estimatethe Abw. Metric resultsabovethe
gray arearepresenta strongOWD trend, and below the gray
arearepresentno OWD trend.Thus,the gray areais the range
of estimatedavailable bandwidth.Pathloadcan estimatethe
path’s availablebandwidthin this mannerwithout requiring a
high-resolution timer.

igi [18] — initial gap increasing— usesthe similar algorithm
with modified method — PTR (packet transmissionrate) in

order to make measurementmore efficiently. However, it
omitted someimplementationissuessuch as timer resolution
andinterruptcoalescing,therefore,the resultsarenot accurate
on hostswith GigE NICs (seeComparison results at theendof
this section-B).

Variable spacing (gaps increase crossing the packet train)

The transmittingtimeline of the variablespacingpackettrain
is shownin Figure5. This algorithm is usedin pathchirp for
available bandwidth measurement.It assumesthat once the
transmitrateof anypacketpair, Px andPx+1, within thepacket
train is the sameas the available bandwidth, the remaining
packetpairsafter packetPx, which havea higher transmission
rate, will be further separatedby cross traffic. That is, the
dispersionof the restof the packetpairsat the receiverwill be
larger than the spacing at the sender side. If the packet
dispersion increasesconsistently, then the sending rate at
packet pair Px and Px+1 is the available bandwidth.

This algorithm is efficient for estimatingend-to-endavailable
bandwidthbecauseit can theoreticallymeasurethe available
bandwidth in one round trip time. Requirementsof system
resourcesfor this algorithm, however, are very high. Basic
requirementsfor this algorithmincludethe maximumhost I/O
bandwidth and accurate timing system. The measurement
systems(bothsendinghostandreceivinghost)needto be idle,
so the sendercan paceout a packettrain with precisetiming
andthe receivercantime the incomingpacketaccurately.The
timing requirementis similar to that of nettimer. Due to the
time requiredby the systemcall describedin Table2, and the
I/O interruptdelay(coalescing)causedby high-speednetwork
devices(1 Gb/s or higher), the variablespacedpackettrain is
also difficult to generateon systemsequippedwith a high-
speednetworkinterface,especiallyundertheFreeBSDsystem,
which canonly accuratelypaceout packetsup to 470Mb/s on
typical mid-range hardware due to the large system call
overhead.

Accurately detecting the gap increaseis difficult when the
networkspeedis higher than300 Mb/s and/orpacket-pairrate
is higher than 50% of the network speed.A couple of key
issuesmake this measurementdifficult. First, the numberof
packetsthat canbe sentis limited by the timer resolutionand
the range of packet speed. For example, measuringGigE
network where utilization is 50%. The period of a 500Mb/s
packetpair is 24 µs, and the period of a 1 Gb/s packetpair is
12 µs. Because the system timer resolution is 1 µs, the
maximum number of packetsthat can be sent betweenthe
500Mb/s packetpair and the 1 Gb/s packetpair is 11packets.
Dueto othersystemoverhead,thenumberof accuratelyspaced
packetpairs is about a half of that, or 5 packets.Under this
circumstance,cross traffic can either compactor spreadout
this small packet fleet, causing undeterminable results.
Second,when the packet train tail is short (e.g.: 5 packets),

Figure 5. Transmitting timeline of variable spacing packet
Time

P1 PnPn-4 Pn-3 Pn-1 Pn-1

even though the cross traffic is less than the path capacity
minusthis probetraffic, it will mostlikely increasepacket-pair
gapsin theseprobepacketswhenboth traffics encountereach
other, causingunderestimationof the bandwidth.Seecase1
and case 2 illustrated in Figure6. Furthermore,by default,
interruptcoalescingon Gigabit or high-speedNICs bunches5
to 12 packetstogetherfor oneinterruptservice.Without a user
accessibleonboardtimer, the systemwill think all the packets
arrived at the same time.

Due to thesefactors and discussionsfrom previoussections,
the variablespacingpackettrain algorithmmay not be able to
measurebandwidthaboveOC-12 (622Mb/s). A larger MTU
(also called Jumbo Frame) can improve the measurement
condition for currentnetwork bandwidth.However,the Large
MTU hasnot yet beenstandardized.Assumethata 32KB MTU
(the largestIP frame) might be acceptedby network standard
in a few years, it could make variable spacingalgorithm 20
timesbetter.However,if this MTU sizethenlastsmorethana
dozenyears,the network bandwidthmay increasemore than
20,000times.So, we cannotsimply wait for MTU increasing
to help algorithms functioning properly.

Comparison results:

Current tests show that igi consistently underestimates
available bandwidth on 1 Gb/s paths.For example,igi gave
resultsof 219Mb/s on a one-hop1 Gb/spaththatwasonly 7%
utilized, and336Mb/s on an 8-hop 1 Gb/spathwhat was27%
utilized (utilization wasmeasuredby netest). Pathchirp (1.3.3
release)doesnot produceany result if the measurementperiod
is lessthan30 secondsor the parameteris greaterthan250m
usingthe “-u” option on the one-hoppath.Whenusedwithout
any option, pathchirp measurementresults were between
70.58–94.3Mb/s on the samepath. One-hoptestswere done
betweentwo Linux 2.4.20testbedhosts:(1) a dual Intel Xeon
2.2 GHz CPU with Syskonnect9843 SX GigE fiber NIC and
the maximum network systemthroughput(MNST) of 1 Gb/s
on a 64-bit/66MHz PCI; and (2) an AMD 1.4 GHz CPU with
NetgearGA620TGigE copperNIC andMNST of 710Mb/s on
a 32-bit/33MHz PCI. The maximumthroughputon this one-
hop path is about 690Mb/s. The 8-hop tests were done
between the dual Xeon host and a dual AMD MP host
(1.4 GHz CPUs) that also runs 2.4.20Linux with Syskonnect
9843 SX GigE fiber NIC (MNST of 725Mb/s on 32-
bit/33 MHz PCI). After upgradedLinux to 2.4.21on the one
hop testbed,the peakthroughputis increasedto 732 Mb/s, and
igi gives a better result of 339 Mb/s Abw, where pathload
reports 676 Mb/s Abw, and netest report the maximum
throughput is 705 Mb/s. Igi seems to be more system
dependent.

4.3 Packet train based algorithms
Packet-train-basedtools do not measure the packet pair
dispersion inside the packet trains. Packet train algorithms
attemptto determinetheamountof crosstraffic ratherthanthe
amount of packet dispersion caused by the cross traffic
[Figure6]. Therefore, packet-train algorithms are less
sensitiveto the resolutionof thesystemtimer andlessaffected
by I/O interrupt delays (coalescing). Also, packet train
algorithms do not rely on any single packet pair; therefore
increasing the packet length can help to overcome timer
resolutionproblemwhenmeasuringvery high-speednetworks.

A well-known issuewith usingpackettrainsis how to measure
the capacityof links beyondthe narrowlink. [13][8] proposed
a solutionto this problembasedon the fluid spray effect (FSE),
summarized here.

FSE theorem:Assumethat two packettrains,both travelingat
speedslower than the network capacity,encountereachother
at a router.If the aggregaterateequalsor exceedsthe router’s
capacity, all packets are bunched together to form a new
stream.When this streamleavesthe router, its train rate is at
the outgoingrouter interface(line) speed.This is shownin the
lower right in Figure4, which also showsthat if an incoming
train is long enough,a pair of packetsor a “ subtrain” within
this train will travel at the line speed when it leaves the router.

FSE happensalmost everywhereon the Internet. The packet
bunchingeffect is different at eachrouterbecauseeachrouter
hasdifferentbandwidthandcrosstraffic. This packetbunching
extent can be fed back to the source host via an ICMP
message,as the ICMP messagewill carry packet dispersion
information on each router back to the sourcehost, and the
sourcehost can usethis information to computeeachrouter’s
physical bandwidth. This method allows packet-train-based
methodsto measurehop-by-hoplink capacitybeyonda narrow
link.

Using packet trains for end-to-end network bandwidth
measurementrequires fewer system resources.Netest uses
feedback adaptive control and feedback asymptotic
convergence(FAC2) algorithm [13] to measureend-to-end
availablebandwidthand analyzecrosstraffic, then computes
the bottleneck capacity of the path. Figure6 illustrates the
FAC2 principleof how crosstraffic affectsthepackettrain rate
from sourceto destination.The netest client on the sending
host sends out a constant spacedpacket train at the rate
recommended(feedbackadaptivecontrol) by the netest server
running on the receivinghost.The netest servermeasuresthe
incomingratefor eachcar [8] (measurementunit in numberof

Figure 6. Cross traffic effect to the packet train rate

MTUs, see Figure 6) and the rate for the entire packet train.
When the adjusted sending rate to receiving rate ratio is close
to 1, the receiving rate is the available bandwidth. The
theoretical convergence time is 5 RTTs [13].

Because algorithms based on packet trains measure the arrival
time of each car instead of each individual packet, the time
resolution issue is simplified. Packet-train-based algorithms
can adjust the car size to fit the system time resolution, while
packet-dispersion-based algorithms have to rely on how
accurately the system can measure the biggest single packet
(one MTU). Therefore, packet-train-based algorithms work
better in high-speed network environments, especially for end-
to-end bandwidth measurement. [13] mathematically proves
that a packet-train-based algorithm, FAC2, can measure
available bandwidth accurately. Using an emulation network
testbed [20] we have verified that the accuracy of FAC2 is
close to 99% when path utilization is below 70%. In high-
utilization cases, FAC requires more probes to converge to an
accurate result, as shown in Figure 7.

5. FUTURE BANDWIDTH
MEASUREMENT

In this section we discuss the system hardware issues required
to estimate new high-speed networks such as OC-48 (2.4 Gb/s)
and 10 Gb/s Ethernet.

Single packet, packet dispersion, and packet train are different
techniques to probe a network for measuring bandwidth. In
order to measure high-speed networks, the single packet
method requires a high resolution timer due to packet size
constraints. A similar issue applies to the packet dispersion
algorithms. For example, a 1514-byte packet transmitted
through a 10 Gb/s NIC takes about 1.21 µs, and this packet
traveling through a 1 Tb/s NIC takes only 12.1 ns. Current
UNIX timer resolution is 1 µs, which makes it impossible to
measure any incoming packet over 3 Gb/s due to the additional
overhead of system calls. When the receiving interrupt is
coalesced, the packet dispersion is impossible to measure.

The packet train technique has no size restriction for its car
[Figure 6], therefore, the time resolution is not crucial.
However, it still requires that the source host must have a
higher sending rate than the available bandwidth, and have the
ability to control the burst size and sending rate. The high
sending rate may sound trivial, since modern CPUs and NICs
are fast. In fact, it is more complicated.

Currently, the end host I/O bandwidth is similar to the network
bandwidth. The end host is the main factor limiting network
application throughput in the future. A host’s memory, I/O
bus, NIC, and operating system affect the throughput. Thus, a
method to determine if the end hosts are capable of measuring
the available bandwidth is a required part of bandwidth
estimation algorithm design.

In the past 10 years, network speed has increased by a factor of
1000; CPU clock speed has increased by more than a factor of
30; memory clock speed has increased by almost a factor of
20. Memory bandwidth, however, has increased by only a
factor of 10, and PCI I/O bus bandwidth has increased by only
a factor of 8. If these growth rates continue for the next
decade, the end host will certainly be the throughput
bottleneck for network applications. The growth of network to
system bandwidth scale is shown in Figure 8.

The main bottleneck in current systems is at the memory and
I/O subsystem. Figure 9 shows the data path for sending data
from user memory to the NIC. For a system equipped with a
64-bit/66MHz PCI bus, if the memory bus is 266 MHz, the
total time needed to transfer data from a user buffer to the NIC
is 6 memory cycles: the 2 fixed cycles plus 4 memory cycles
per bus cycle (266/66). However, if the memory bus is
533 MHz, then 10 cycles are required (2 + 533/66). The

Figure 7. Feedback Asymptotic Convergence

Network (LAN)

Current WAN Bandwidth

Past Wide Area Network (WAN) Bandwidth

Future WAN Bandwidth

EH / LAN EH / LAN

EH EH

End Host (EH)

LANLocal Area

Figure 8. Network and system bandwidth change scale

Figure 9. Hardware data path for packets

Network

user memory

kernel memory

NIC

time = 2 cycles

data
dataPCI bus

Memory bus

time
memoryclock
IObusclock

-----------------------------------cycles=

generic formula for calculating the I/O throughput from
memory and I/O bus frequency is:

Let us apply this formula to a real case. An ASUS K7V
motherboard is equipped with VIA 868 PCI controller that has
a 133 MHz memory bus, and it produces 144 MB/s memory
copy bandwidth (288 MB/s memory bandwidth). The newer
generation VIA PCI controller, VT400, has a 400 MHz
memory bus and produces 326 MB/s memory copy bandwidth
for the ASUS A7V8X motherboard. Both motherboards have a
32-bit/33 MHz PCI bus. According to equation (2), a VIA 868
system can have a maximum 384 Mb/s (48 MB/s) network
throughput, while a VT400 motherboard can have only
369 Mb/s network throughput. In fact, due to DMA overhead
(see the next paragraph), the VT400 motherboard only has
300 Mb/s network throughput, while the same NICs can
produce 2 or 3 times higher throughput on other motherboards.
Therefore, we can see that simply increasing the memory clock
speed does not necessarily result in an equivalent increase in
the data transfer rate from user space to the NIC. [17] presents
some specific tuning ideas on how to speed up the 10-Gigabit
NIC performance.

Direct memory access (DMA) operation overhead is related to
the PCI burst size because each DMA transfer needs to acquire
the bus (bus arbitration), set the address, transfer data and
release the bus. The total clock cycles needed for a burst
transfer is

total clock cycles = 8 + (n-1) + 1 (Idle time on bus)

where n is the number of data transfers per burst, and
8 is the overhead of burst operation

Table 4 shows the latency and transfer rate of using different
burst sizes for data transferring across the PCI bus. It clearly
shows that as the burst length increases, the transfer rate
increases. PCI-X extends the burst size to a few kilobytes,
which can improve the I/O performance where large burst
sizes can be applied.

An interesting issue in improving network transmission and
receiving is the use of the so-called zero-copy implementation.
A common misconception is that zero-copy implementations
may double the network transfer. However, zero-copy
implementations only help I/O performance when the I/O bus
clock rate is close to the memory bus clock rate. As the
memory to I/O bus clock ratio increases in the future, zero-
copy will not be very helpful for host I/O performance. The
zero-copy implementation will help the system to reduce the
CPU usage, because the user to kernel space memory copy is
done by the CPU. So when the I/O performance is CPU bound,
zero-copy will improve throughput. A key issue with a zero-
copy implementation is memory page mapping. To map an I/O
memory buffer to a user data buffer, the buffer size must be
equal to the memory page size, typically 4 KB, controlled by
memory controller (hardware). This requires that I/O data be in
4-KB data blocks, which does not map well to 1500-byte
packets of current Ethernet-based networks. When Jumbo
Frames of at least 4 KB are used, then a zero-copy
implementation will be possible.

The percentage of performance that will be increased can be
derived from equation (2) above and substituted into equation
(3) below:

A zero-copy implementation is not really zero memory copy, it
only eliminates the memory copy from user space to the kernel
or inversely. It will never eliminate the I/O bus transfer
(DMA), which is the major bottleneck to the I/O performance.
That is, only two memory cycles are eliminated in zero-copy
implementation. If I/O bus speed is 66 MHz and the memory
bus is 133 MHz, the performance will be increased by

but if the memory bus increased to 400 MHz, then the
maximum percentage of throughput improved by zero-copy
implementation is

Another method to on increase system performance is to use
SMP (symmetric multiple processors). High-end I/O buses are
most likely only supported on SMP motherboards. For
example, most x86-based single CPU motherboards only have
32-bit/33MHz PCI bus, while all x86-based SMP
motherboards support PCI-X and 64-bit/66MHz PCI buses.

Table 4. Latency for Different Burst Length Transfers
(32-bit/33MHz PCI)

Burst
Size

Total Bytes
Transferred

Total
Clocks

Transfer
Rate

(MB/s)
Latency (ns)

8 32 16 60 480

16 64 24 80 720

32 128 40 96 1200

64 256 72 107 2160

IOthroughput
MemoryBandwidth

PCI Memory 2×+()cycles
--=

MemoryBandwidth
MemoryClock
IOBusClock

------------------------------------- 2+
---=

(2)

percentage
newThroughput oldThroughput–

newThroughput
--=

MemoryBandwidth
MemoryClock
IOBusClock

--- MemoryBandwidth

MemoryClock
IOBusClock

------------------------------------- 2+
---–

MemoryBandwidth
MemoryClock
IOBusClock

--=

2 IOBusClock×
MemoryClock 2 IOBusClock×+
--= (3)

percentage
66 2×

133 66 2×+
------------------------------ 49.8%= =

percentage
66 2×

400 66 2×+
------------------------------ 24.8%= =

PCI-X will help to increase the I/O performance, but when
using SMP systems, one must be aware that plugging in two or
more CPUs will reduce the system memory bandwidth. This is
due to the bus arbitration. For example, just plugging a second
CPU on a SMP motherboard without using it can reduce
memory bandwidth by 10-15%. Activating the second CPU
with an SMP OS kernel will reduce memory bandwidth even
more, up to 20%.

Summary

Achieving a fast enough packet sending rate to measure high-
speed networks is not trivial on current (or even near-future)
hardware. Therefore, as part of the design of network
bandwidth estimation algorithms, host hardware, memory
bandwidth, CPU power, I/O bus bandwidth, and NIC speed all
need to be considered. This allows an algorithm to determine if
a given host is capable of measuring bandwidth. To measure
available bandwidth, both hosts must be able to handle data
transfer rates higher than the available bandwidth. Otherwise,
only the maximum throughput of the slower end host can be
measured.

Implementation of the algorithm is another important factor
affecting the data transfer rate. The implementation also
depends on the operating system. For example, assume that a
system has 1000 MB/s memory bandwidth, and one system
call costs 1 µs. Sending a 20 KB UDP datagram from user
memory to NIC memory takes 100 µs + 1 µs. If this datagram
is sent as 20 1 KB datagrams, then the total time will be 100 µs
+ 20 µs. The second method reduces the transfer rate by
approximately 20%. So, in algorithm design and
implementation, both hardware and software issues must be
considered.

In summary, our study shows that algorithms are more robust
if they have lower system resource requirements. Algorithms
restricted by timing related system resources will have
difficulty measuring network bandwidth on high-speed
networks. One possible solution to timing-related problems is
to directly access a system real-time clock register in order to
obtain the accurate time. A generic solution is to use a time-

insensitive method such as packet trains to build new
algorithms.

6. USING BERKELEY PACKET FILTER
The Berkeley packet filter (BPF) provides an interface to
network data link layers in a protocol-independent fashion. All
packets traveling on the network the host is attached to are
accessible via this mechanism. BPF also can timestamp each
packet as it arrives. However, obtaining an accurate packet
arrival time is a very difficult task when the NIC speed is
1 Gb/s or higher; and using current PC-based hardware to
capture all packets in a high-speed flow is non-trivial.

Time related issues — interrupt moderation and the cost of
obtaining system time — were discussed in § 3. These both
introduce timing errors during timestamping of every
incoming packet. Errors occurring via get system time
function, gettimeofday(), may be correctable when the error
rate is low, but errors caused by interrupt moderation are not
correctable. In measuring a 1 Gb/s network, the maximum time
for receiving two contiguous 1500-byte IP packets is 12 µs.
According to the discussion in § 3, the system time function
(getting time from the clock time counter or CTC) will
introduce an 8% error (based on 959 ns cost of microtime
kernel function). When measuring a 10 Gb/s network, the
maximum packet spacing is 1.2 µs, so the 959 ns cost will
result in an 80% error. Since the cost of the microtime function
is relatively constant, this error can be calibrated by
subtracting the microtime function cost from the packet arrival
time.

The interrupt moderation causes non-correctable time errors
because all incoming packets are collected and DMAed (direct
memory access) into system memory without timestamping
until an I/O interrupt occurs. Once the interrupt moderation
time has expired, the network device driver is triggered to
process all these packets in the system memory. This
timestamp is useless because the actual packet arrival time is
unknown. In § 3, we mentioned that an onboard NIC timer is
one possible solution for this problem, but onboard NIC timer
technology is not suitable for a general purpose network
measurement tool. because very few NICs have an onboard

Figure 10. Hardware data path for incoming packets

Data Rate

User Buffer

User Buffer

PC
I

Sy
st

em
 B

uf
fe

r

B
PF

G
ig

E

>= 125 MB/s

depend on filter(s)

depend on the cache design
filted data rate

Sy
st

em
 C

al
l

Regular data flow

IP − TCP/UDP

125 MB/s

timer. Also, using an onboard NIC timer requires modifying
the device driver for all NICs (with onboard timers) and BPF
catchpacket() + bpf_mtap() functions in all required operating
systems (For example, see [25] for the source code for
modifications of using the SysKonnect NIC under FreeBSD).

Therefore using BPF is not a useful solution for general
purpose network measurement tools. It requires that
developers have a very deep knowledge of the device driver,
operating system kernel, application code strategy, and
algorithm development. It also requires a specific NIC and a
specific operating system to run. This prevents the tool from
being used on different systems.

Without completely understanding both operating system and
hardware system design, one might think that using BPF to
capture packets and timestamp them may be easier than doing
the same task at user level. In fact, using BPF to capture
packets often requires higher system resources, such as CPU
and memory bandwidth. Figure 9 is the data path for a normal
network traffic flow through the end host system. When the
BPF device is opened, the NIC operates in promiscuous mode
which allows all packets on that network segment to be
captured and copied into system memory. This behavior
changes the data path on the system. Figure 10 shows the new
data path, and this data path is highly sensitive to cache size
and data processing speed, including the CPU and memory
bandwidth.

Therefore, building a BPF-based capturing system requires
even more careful system design. A key issue when NICs are
operating in promiscuous mode on a host is that the amount
data transferred from NIC into system memory via DMA can
be at the maximum NIC capacity, not only the amount of data
sent to this host. Of course, this depends on whether or not the
host is connected to a shared or switched link. The design must
consider all the traffic from the network unless the host is
directly connect via a dedicated link. Let Rcp be the capture
data rate, which is less than or equal to the NIC capacity (Rnic),
the total memory bandwidth required for non BPF based
capturing system is:

and for BPF based capturing system is:

PCI is in equivalent memory clock cycles (MemoryCycle)
L3L4MemoryCycles is memory bandwidth for IP-TCP/UDP.

From the above equations, we see that if the data capture rate
is at the NIC capacity, the BPF-based capturing system needs
more memory bandwidth to do the filtering than the non-BPF-
based system. This bandwidth required for filtering depends on
the BPF filter size, BPF buffer size, cache size, and how fast
an application can drain the filtered data (the CPU speed).

When the data capture rate is less than the NIC capacity, a
BPF-based capturing system requires extra memory bandwidth
to handle the unwanted data DMAed into system memory, and
this amount of bandwidth cannot be reduced. The tunable
bandwidth is the amount (CacheableMemoryCycles × Packet
Rate) required by the filtering process. In general, the BPF
buffer size should be about one half of the cache size (built-in
CPU cache controller), assuming that CPU speed and incoming
packet rate (the number of packets per second, not the data
rate) are moderate. If the CPU is capable of faster filtering and
the capturing application can drain the filtered data
immediately, then the BPF buffer size should be larger than
one half of the hardware cache size. If the packet rate is higher,
the BPF buffer should be relatively smaller. The idea is to keep
the packet header access cost in one CPU clock cycle instead
of in one memory clock cycle, which is N times greater than
the CPU clock cycle (N is the ratio of the CPU clock rate to
memory bus rate). For example, a capture system has a
933 MHz Intel P3 Xeon CPU with 256 KB cache to capture
1 Gb/s network traffic. A 141 KB BPF buffer gives the best
system performance, capturing 242,718 packets per second
(average 515 bytes per packet) for tcpdump to write results to a
fast local disk (100 MB/s). When the BPF buffer was increased
to 512 MB, the capture rate dropped to 226,222 packets per
second. With a 32 KB default BPF buffer set by libpcap, the
capture rate is 45,244 packets per second using the same
average packet size.

Above discussions are for using BPF on a receiving host.
When using BPF on a sending host, it requires more memory
bandwidth. Besides accommodating all incoming traffic, the
sending host also needs to send traffic and to do filtering on
outgoing traffic. This is the reason why running tcpdump on a
sending host cannot completely capture all outgoing traffic.
Therefore, when designing a network measurement system
using BPF, the algorithm has to consider if the tool is for
measuring sending traffic or receiving traffic. These factors
illustrate that BPF is a useful mechanism for capturing packets
for data analysis, but may not be suitable for measuring
bandwidth on a high-speed network.

7. CONCLUSION
An important issue for implementing available bandwidth
algorithms is the speed of the measurement host compared to
the physical bandwidth of the network. Current high-speed
network bandwidth exceeds most available system I/O
bandwidth, and this will likely continue for the foreseeable
future. One should not expect that simply faster CPU or
memory will make the measurement job easier.

Two issues arise when determining how to measure
available bandwidth on a high-speed network:

1) Can a slow end host measure a network bandwidth that is
higher than the host NIC bandwidth and/or the I/O bus of the
end hosts? Existing algorithms are only able to measure the
network capacity, but not available bandwidth. Current
algorithms for measuring available bandwidth require that the
end hosts have higher throughput than the available network
bandwidth. Therefore, new available bandwidth estimation
algorithms are needed. One possible solution is to measure
physical bandwidth, then estimate cross traffic, thus
computing the available bandwidth.

2) It is important to take into account the system timer
resolution when designing available bandwidth measurement

Bandwidth PCI MemoryCycle 2×+() Rcp×=

PCI Rcp× MemoryCycle Rcp 2××+=

Bandwidth PCI Rnic× MemoryCycle Rcp× 2×+=

+CacheableMemoryCycles Rnic×

+L3L4MemoryCycles Rnic×

algorithms.When the network capacity is high, the time to
transmitor receivea packetbecomesvery short.Therefore,it
is not possibleto measureavailablebandwidthusing packet
pair dispersion algorithms on very high speed networks.
Current experience shows that using packet trains is an
excellent alternative for building algorithms to measurethe
network bandwidth in the future.

Basedon the aboveanalysisand discussion,we conclude
with the following advice for designersand implementersof
high-speednetworkavailablebandwidthestimationalgorithms
and tools:

1. Most existing available bandwidth algorithms and tools
are only accurateup to speedsof 100-150Mbits/second.
A very few algorithms work on speeds up to
1-2 Gbits/second. Future algorithms should target
network speeds of 10 Gbits/second or higher.

2. When designingand implementingavailable bandwidth
estimationalgorithmsand tools, one must be very aware
of the system hardware issues described in this paper.

3. The packet train is currently the best methodologyfor
building algorithms to measure high-speed network
bandwidth.

4. Tools that attemptto measureavailablebandwidthshould
attemptto determinewhetheror not themeasurementhost
is the bottleneck,and report this fact when it is. New
algorithms are needed that do not require a high-
throughput end host to measure network available
bandwidth.

8. ACKNOWLEDGMENTS

This work was supportedby the Director, Office of Science.
Office of Advanced Scientific Computing Research.
Mathematical, Information, and Computational Sciences
Division underU.S. Departmentof EnergyContractNo. DE-
AC03-76SF00098.This is report no. LBNL-48556. See
disclaimer at http://www-library.lbl.gov/disclaimer.

References

[1] UylessBlack, Network managementstandards:SNMP, CMIP,
TMN, MIBs, and object libraries. New York: McGraw- Hill,
c1995.

[2] R.L. Carter and M.E.Crovella, “Measuring BottleneckLink
Speedin Packet-SwitchedNetworks,” Performance Evaluation,
vol. 27,28, pp. 297-318,1996.

[3] Kevin Lai and Mary Baker. Measuring Bandwidth. In
Proceedings of IEEE INFOCOM, March 1999.

[4] Allen B. Downey, Using pathcharto estimateInternet link
characteristics,proceedingsof SIGCOMM1999,Cambridge,MA,
September 1999, 241-250.

[5] Kevin Lai andMary Baker, “Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth”, Proceedingsof the USENIX
Symposium on Internet Technologies and Systems, March 2001.

[6] C. Dovrolis, P. Ramanathan,D. Moore, What do packet
dispersion techniques measure? In Proceedings of IEEE
INFOCOM, April, 2001.

[7] Thomas J. Hacker, Brian D. Athey, The End-to-End
Performance Effects of Parallel TCP Sockets on a Lossy
Wide-Area Network, Aug. 2001.

[8] G. Jin, G. Yang, B. Crowley, D. Agarwal, Network
CharacterizationService(NCS), HPDC-10 Symposium,August
2001

[9] Stefan Saroiu, SProbe: A Fast Technique for Measuring
BottleneckBandwidthin Uncooperative Environments.Available:
http://sprobe.cs.washington.edu

[10] ManishJainandC. Dovrolis, Pathload:A MeasurementTool
for End-to-end Available Bandwidth, PAM, March, 2002.

[11] Attila Pasztor´,Darryl Veitch, PC BasedPrecisionTiming
Without GPS, Sigmetrics, June 2002

[12] Attila Pásztor, Darryl Veitch, Active Probing using Packet
Quartets, IMW, Nov. 2002

[13] Jin, Guojun, “Algorithms and Requirementsfor Measuring
Network Bandwidth”, technical report LBNL-48330, 2003

[14] Deb Agarwal, José María González,Guojun Jin, Brian
Tierney, “An Infrastructurefor Passive Network Monitoring of
Application Data Streams”, PAM, April 2003

[15] VinayRibeiro,RudolfRiedi,RichardBaraniuk,Jiri Navaratil,
LesCottrell, “pathChip:Efficient AvailableBandwidthEstimation
for Network Paths”, PAM, April 2003

[16] G Jin, B Tierney, “Netest:A Tool to Measurethe Maximum
Burst Size, Available Bandwidth and Achievable Throughput”,
ITRE, August 2003

[17] Justin (Gus) Hurwitz, Wu-chun Feng, “Initial End-to-End
PerformanceEvaluationof 10-Gigabit Ethernet”,Hot Interconnect
11, August 2003

[18] Ningning Hu, Peter Steenkiste, “Evaluation and
Characterizationof Available Bandwidth Probing Techniques”,
IEEE JSAC SpecialIssuein Internet and WWW Measurement,
Mapping, and Modeling, 3rd Quarter, 2003.

[19] ftp://ftp.arl.mil/pub/ttcp

[20] http://dsd.lbl.gov/NCS/back/emn.html#EMN_LAB

[21] http://dast.nlanr.net/Projects/Iperf

[22] Netperf: A Network PerformanceBenchmark.Available:
http://www.netperf.org/netperf/training/Netperf.html

[23] pchar: A Tool for MeasuringInternet Path Characteristics.
Available: http://www.employees.org/~bmah/Software/pchar

[24] http://www.psc.edu/networking/treno_info.html

[25] http://dsd.lbl.gov/SCNM/FreeBSD_mods.html

[26] http://www.caida.org/projects/bwest/presentations/mtgjun02/
L2effects.pdf

